A theorem on accessibility

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An accessibility theorem for infinite graph minors

In his recent collection [ 2 ] of open problems about infinite graphs, Halin defines the following hierarchy of graphs. He defines Γ0 to be the class of all graphs (finite or infinite), and for each ordinal μ > 0 he defines Γμ as the class of all graphs containing, for each λ < μ, infinitely many disjoint connected graphs from Γλ. Thus, Γ1 is the class of infinite graphs, Γ2 is the class of all...

متن کامل

A note on spectral mapping theorem

This paper aims to present the well-known spectral mapping theorem for multi-variable functions.

متن کامل

A Theorem on the Accessibility of Boundary Parts of an Open Point Set

The theorem was established and proved in order to bridge a gap in the proof of a classical theorem on surfaces z(x, y) of nonpositive Gaussian curvature. Theorem 1 might, however, be of interest in other respects. The completed proof of the differential geometric theorem is given in the subsequent paper. The special case of Theorem 1 needed for the completion is that where the boundaries of th...

متن کامل

Some Results on Baer's Theorem

Baer has shown that, for a group G, finiteness of G=Zi(G) implies finiteness of ɣi+1(G). In this paper we will show that the converse is true provided that G=Zi(G) is finitely generated. In particular, when G is a finite nilpotent group we show that |G=Zi(G)| divides |ɣi+1(G)|d′ i(G), where d′i(G) =(d( G /Zi(G)))i.

متن کامل

A common fixed point theorem on ordered metric spaces

A common fixed point result for weakly increasing mappings satisfying generalized contractive type of Zhang in ordered metric spaces are derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Časopis pro pěstování matematiky a fysiky

سال: 1935

ISSN: 1802-114X

DOI: 10.21136/cpmf.1935.123557